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Abstract. We give an unconditional proof that self-dual Artin repre-
sentations of Q of dimension 3 have density 0 among all Artin repre-
sentations of Q of dimension 3. Previously this was known under the
assumption of Malle’s Conjecture.

1. Introduction

It is expected that essentially self-dual motives (i.e. motives that are dual
to a Tate twist of themselves) should occur with density 0. This statement
has not yet been formulated for motives with weights higher than 0, but
for Artin motives of fixed dimension, this is a precise question as shown
in [1]. Let F be a number field, and if ρ is an Artin representation of F ,
let q(ρ) be the absolute norm of the conductor ideal q(ρ). We denote by
ϑF,n(x) the number of isomorphism classes of Artin representations over F of

dimension n with q(ρ) ≤ x and by ϑsdF,n(x) the number of isomorphism classes

of self-dual Artin representations over F of dimension n with q(ρ) ≤ x.
Rohrlich proved in [10] that the quotient ϑsdQ,2(x)/ϑQ,2(x) goes to 0 as x goes

to ∞. Thus, our density 0 expectations are true for dimension 2. (The
1-dimensional case is elementary.) He proved the same result for Q and
dimension 3 under a weak form of Malle’s Conjecture. In this paper, we
remove this condition, viz. we confirm unconditionally,

Theorem 1.

lim
x→∞

ϑsdQ,3(x)

ϑQ,3(x)
= 0.

We can replace Q by any number field and ask a similar question. But
that case seems considerably harder. In dimension 1, the density result for
a general number field follows from work of Taylor [13].

Before describing our work, we set some notations. For a finite extension
K/F of number fields, we denote by dK/F the relative discriminant ideal and
by dK/F its absolute norm. For F = Q, we simply write dK and dK . We
denote by ηF,m(x) the number of extensions K/F inside a fixed algebraic
closure F̄ such that [K : F ] = m and dK/F ≤ x. Also, if T is a transitive

subgroup of the symmetric group Sm, we denote by ηTF,m(x) the number of

extensionsK/F for which Gal(L/F ) ∼= T as permutation groups, where L/F
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is the normal closure of K over F and Gal(L/F ) is viewed as a permutation
group via its action on conjugates of a primitive element of K over F .

We now describe the structure of this paper. In section 2, we shall use
results from [10] to see that the problem reduces to bounding the number
of irreducible self-dual Artin representations of Q.

Thus, we wish to count irreducible self-dual Artin representations. Such
a representation has to be either orthogonal or symplectic. Since the dimen-
sion is odd, we see that we are reduced to the orthogonal case. We are thus
reduced to analyzing irreducible orthogonal finite subgroups G of GL3(C),
where G = ρ(Gal(K/Q)) and K is the fixed field of ker ρ.

Our general strategy is to replace ϑ, which count conductors of represen-
tations, by η, which count discriminants of number fields. We then appeal
to results of Bhargava ([3], [4]) and Bhargava, Cojocaru, and Thorne [5].

We shall divide our analysis into two cases : (1) Those G which are
contained in SO3 and, (2) those which are not. In section 3, we analyze the
subgroups occurring in case (1). Using bounds on ramification of primes,

we obtain bounds in this case in terms of ηA4
Q,4(x), ηS4

Q,4(x), and ηA5
Q,5(x).

Having obtained these, we turn our attention to case (2). We further
divide this case into two parts. Part 1 is the case where −1 6∈ G. We an-
alyze this case in section 5. If −1 6∈ G, then we show that G ∼= S4 and ρ
is monomial, induced from a quadratic character of a cubic subextension.
Therefore, we reduce our problem to counting such extensions and charac-
ters, using the interplay between conductors and discriminants, and obtain
bounds in terms of ηQ,3(x).

In section 6, we deal with the case where −1 ∈ G. This implies that G can
be written asH×{±1}. In this case, in addition to monomial representations
with H ∼= A4 or S4, we must also contend with representations coming from
a primitive H ∼= A5. It is worth noting that the irreducible primitive case
corresponds to the dominant term in all our analysis and it is only the power-
saving result of Bhargava, Cojocaru and Thorne that helps us establish our
result.

Finally, in section 7, we combine results from section 4, 5, 6 to get the
main theorem.
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3. Reduction To The Irreducible Case

As in [10], we have

(1) ϑsdQ,3(x) = ϑab,sdQ,3 (x) + ϑ1+2,sd
Q,3 (x) + ϑirr,sdQ,3 (x),

where
(a) ϑab,sdQ,3 (x) is the number of abelian self-dual Artin representations of Q

of dimension 3 with q(ρ) ≤ x
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(b) ϑ1+2,sd
Q,3 (x) is the number of isomorphism classes of self-dual Artin

representations of Q of dimension 3 of the form ρ ∼= ρ′ ⊕ ρ′′ with ρ′ one-
dimensional, ρ′′ irreducible and two-dimensional and q(ρ′)q(ρ′′) ≤ x, and

(c) ϑirr,sdQ,3 (x) is the number of irreducible self-dual Artin representations

of Q of dimension 3 with q(ρ) ≤ x.
From Theorem 2 of [10], we see that

ϑab,sdQ,3 (x) = O(x(log x)2),

while from equation (80) of the same paper, we see that

ϑ1+2,sd
Q,3 (x)� x2−ε.

Since, by Theorem 1 of [10],

ϑabQ,3(x) ∼ O(x2(log x)2),

we see that, if we can prove

(2) ϑirr,sdQ,3 (x)� O(x2−ε),

then we conclude that the self-dual representations have density zero.

4. Finite Irreducible Orthogonal Subgroups of GL3(C)

We are interested in irreducible self-dual Artin representations. By def-
inition of self-dual representations, these have to be either orthogonal or
symplectic, i.e. their image is contained either in On(R) or Sp2n(C). (In
particular the trace has to be real for these representations.) But since the
dimension is odd, these have to be in O3, where O3 is the orthogonal group
of real 3x3 matrices. We shall first concentrate on finite subgroups of SO3.
Referring to [2], chapter 5, we see that every finite subgroup G of SO3 is
one of the following :

(1) Ck : The cyclic group of rotations by multiples of 2π/k about a line
(2) Dk : The dihedral group of symmetries of a regular k-gon
(3) A4 : The alternating group on 4 variables
(4) S4 : The symmetric group on 4 variables
(5) A5 : The alternating group on 5 variables

The cyclic groups and dihedral groups do not possess irreducible 3-dimensional
representations. The last three groups do have irreducible 3-dimensional
representations. Note that S4 has two irreducible 3-dimensional represen-
tations, but the image of only one of them is contained in SO3. We call a
subgroup G of GLn(C) irreducible if the inclusion i : G → GLn(C) is an
irreducible representation of G.

5. A Bound on Discriminants for finite subgroups of SO3

In this section, ρ is an irreducible self-dual Artin representation and K
denotes the fixed field of kerρ. We know that ρ(Gal(K/Q)) is a finite irre-
ducible subgroup of O3. We divide our analysis into two cases, depending
upon whether ρ(Gal(K/Q)) is a subgroup of SO3 or not. Thus, we write :

(3) ϑirr,sdQ,3 (x) = ϑ1(x) + ϑ2(x),
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where

ϑ1(x) =
∑

ρ
ρ(Gal(K/Q))⊂SO(3)

q(ρ)≤x

1

and

ϑ2(x) =
∑

ρ
ρ(Gal(K/Q)) 6⊂SO(3)

q(ρ)≤x

1.

For the rest of the section, we focus on bounding ϑ1(x). From here on, we
identify Gal(K/Q) with its image under ρ. Thus, we assume Gal(K/Q) ⊂
SO3. We have seen in the previous section that this implies that Gal(K/Q)
is isomorphic to A4, S4, or A5, and we write m for the degree of the per-
mutation group in question. Thus, m = 4 in the first two cases and m = 5
for the third. In all that follows, M is any subfield of K with [M : Q] = m.
The choice of M is arbitrary, but the normal closure of M is K for every
one of them.

Proposition 1. If Gal(K/Q) ∼= A4,

dM ≤ cq(ρ)3/2

with an absolute constant c > 1.

Proof. We quote a standard bound (cf. [12], p. 127, Proposition 2), which
is

(4) dM ≤ c
∏

p|dM
p>m

p3

with c = 21137.
Now, if p > 4 and p|dM , then ρ restricted to the inertia group I for any

prime p above p factors through its tame quotient (since 2 or 3 are the only
wildly ramified primes for im ρ ∼= A4) and hence, by the formula for (local)
Artin conductor,

(5) ordp(q(ρ)) = dim(V/V I)

where V is the space of ρ and V I is the subspace of inertial invariants.
Case 1: I is a cyclic subgroup of order 2. Since all elements of order

2 are conjugate to each other in A4, only one computation will suffice for all
the three subgroups of order 2. We see from a character table (see e.g. [9])
and Frobenius Reciprocity that

Multiplicity of trivial character in ρ|I =
3(1) + (−1)(1)

2
= 1.

Hence, dim(V I) = 1. So that dim(V/V I) = 2.
Alternatively, we can also argue without referring to a character table as

follows : We see that since the determinant of ρ is 1, the image under ρ of
a non-trivial element is conjugate to
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


1
−1

−1




from which it is immediate that dim(V I) = 1. We record this method here,
since it is this method that will be useful in the latter sections.

Case 2: I is a cyclic subgroup of order 3. There are two conjugacy
classes, each containing 4 elements of order 3, which cover all the elements
of order 3 in A4. The character of our 3-dimensional representation is valued
0 on both of these classes. Hence, for restriction to any subgroup of order
3, we see that

Multiplicity of trivial character =
3(1) + 0(1) + 0(1)

3
= 1.

Hence, dim(V I) = 1. So that dim(V/V I) = 2.
Therefore, by (5), we see that

q(ρ) ≥
∏

p|q(ρ)
p>m

p2

and combined with (4), it completes the proof.
Again, we can argue without using a character table : Since the deter-

minant of ρ is 1, the image under ρ of a non-trivial element is conjugate
to




1
ζ

ζ2




where ζ is a primary cube root of unity. Thus, it is immediate that dim(V I) =
1.

�
Proposition 2. If Gal(K/Q) ∼= S4,

dM ≤ cq(ρ)3/2

with an absolute constant c > 1.

Proof. We use a strategy similar to the one we used earlier. Note that
the representation ρ of S4 is the twist of the standard representation by
the alternating character. This can be seen from the character table of S4
since ρ is irreducible and of trivial determinant. At the referee’s suggestion,
we direct the reader to [9], page 18, for information about the standard
representation of S4.

Case 1: I is a cyclic subgroup of order 2. There are two conjugacy
classes, one containing 6 elements of order 2 and one containing 3 elements
of order 2, which cover all the elements of order 2 in S4. The character of
our 3-dimensional representation is valued −1 on both these classes. Hence,
for restriction to any subgroup of order 2, we see that

Multiplicity of trivial character =
3(1) + (−1)(1)

2
= 1.
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Hence, dim(V I) = 1. So that dim(V/V I) = 2.
Case 2: I is a cyclic subgroup of order 3. The character is valued 0

on the unique conjugacy class of elements of order 3. Hence, for restriction
to any subgroup of order 3, we see that

Multiplicity of trivial character =
3(1) + 0(1) + 0(1)

3
= 1.

Hence, dim(V I) = 1. So that dim(V/V I) = 2.
Case 3: I is a cyclic subgroup of order 4. Any subgroup of order 4

contains, apart from the identity, two elements of order 4 and one element of
order 2. Our character is valued 1 on elements of order 4 and −1 on elements
of order 2. (Elements of order 4 all belong to the same conjugacy class and
the class does not matter for elements of order 2 as our character is valued
the same on both of them as mentioned above.) Hence, for restriction to
any subgroup of order 4, we see that

Multiplicity of trivial character =
3(1) + 1(1) + (−1)(1) + 1(1)

4
= 1.

Hence, dim(V I) = 1. So that dim(V/V I) = 2.
Therefore, by (5), we see that

q(ρ) ≥
∏

p|q(ρ)
p>m

p2

and combined with (4), it completes the proof.
We remark that we can follow the alternate method mentioned in the

previous proposition here as well.
�

Proposition 3. If Gal(K/Q) ∼= A5,

dM ≤ cq(ρ)2

with an absolute constant c > 1.

Proof. Since m is now 5 rather than 4, we have a different bound

(6) dM ≤ c
∏

p|dK
p>5

p4

with c = 2143959 from the same reference [12].
Now, we again consider cases of cyclic subgroups. Note that, in this case,

we have two 3-dimensional representations.
Case 1: I is a cyclic subgroup of order 2. All the elements of order

2 in A5 are conjugate to each other. Both our characters are valued −1 on
this class. Hence, for restriction of either of the representations to any cyclic
subgroup of order 2, we see that

Multiplicity of trivial character =
3(1) + (−1)(1)

2
= 1.

Hence, dim(V I) = 1. So that dim(V/V I) = 2.
Case 2: I is a cyclic subgroup of order 3. All the elements of order

3 in A5 are conjugate to each other. Both our characters are valued 0 on
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this class. Hence, for restriction of either of the representations to any cyclic
subgroup of order 3, we see that

Multiplicity of trivial character =
3(1) + 0(1) + 0(1)

3
= 1.

Hence, dim(V I) = 1. So that dim(V/V I) = 2.
Case 2: I is a cyclic subgroup of order 5. There are two conjugacy

classes in A5, each containing 12 elements of order 5, which cover all the
elements of order 5. As before, we can compute codimV I using a character
table. But, in this case, it is more efficient to use the alternate method.
We just note that since the determinant of ρ is 1, the image under ρ of a
non-trivial element of I is conjugate to




1
ω

ω2




where ω is a primary 5th root of unity. Thus, it is immediate that dim(V I) =
1. So that dim(V/V I) = 2.

Therefore, by (5), we see that

q(ρ) ≥
∏

p|q(ρ)
p>m

p2

and combined with (6), it completes the proof.
�

Finally, we have

ϑ1(x) =
∑

Gal(K/Q)⊂SO(3)
Gal(K/Q)∼=A4

q(ρ)≤x

1 +
∑

Gal(K/Q)⊂SO(3)
Gal(K/Q)∼=S4

q(ρ)≤x

1 +
∑

Gal(K/Q)⊂SO(3)
Gal(K/Q)∼=A5

q(ρ)≤x

1,

which translates using propositions 1, 2, 3 to

ϑ1(x) ≤
∑

Gal(K/Q)∼=A4

dM≤cx
3
2

1 +
∑

Gal(K/Q)∼=S4

dM≤cx
3
2

1 +
∑

Gal(K/Q)∼=A5

dM≤cx2

1.

Since [3], [4] and [5] show that

ηA4
Q,4(x) = O(x), ηS4

Q,4(x) = O(x), ηA5
Q,5(x) = O(x1−β),

where β is any positive constant less than 1/120, we see that the above
implies

(7) ϑ1(x) = O(x2−2β+ε).

This yields the required estimate for ϑ1(x).
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6. Finite Subgroups of O(3) that are not
contained in SO(3) - Part 1

In this section and the next, we focus on bounding ϑ2(x).
We deal with this case in two parts, depending upon whether −1, the

negative of the identity matrix in 3 dimensions, is in the image of Gal(K/Q).
Part 1 is devoted to the case :

Gal(K/Q) 6⊂ SO(3),−1 6∈ Gal(K/Q).

In this case, we prove a lemma which straightaway tells us whatGal(K/Q)
is.

Lemma 1. Let G be a finite irreducible subgroup of O(3) which is not con-
tained in SO(3). Assume further that −1 6∈ G. Then G ∼= S4.

Proof. Let
H = G ∩ SO(3).

Then we can write
G = H ∪ κH,

where det(κ) = −1.
Then we can define

H∗ = H ∪ (−κ)H,

so that H∗ ⊂ SO(3). Note that G and H∗ are “isoclinic”, i.e. they only
possibly differ by scalars. (Refer to [7], page xxiii, for more details on
isoclinism.) Therefore, H∗ is an irreducible subgroup of SO3. As a result,
we see that H∗ ∼= A4, S4 or A5. But, A4 or A5 do not possess index 2
subgroups. Hence,

H∗ ∼= S4.

Then, we can give an explicit isomorphism from G to H∗ using the index
2 subgroup H, viz. send h→ h and κh→ (−κ)h. It is easily seen that this
is an isomorphism, and thus G ∼= S4.

�
Indeed we see that S4 has a faithful 3-dimensional representation which

satisfies our hypotheses. Our earlier method of comparing conductors and
discriminants yields weaker bounds than what are needed for our purpose,
because we cannot rule out the possibility that det ρ is nontrivial on I. If
I is of order 2, then the matrix corresponding to the non-trivial element of
inertia would then be conjugate to


−1

1
1




which yields a weaker lower bound for q(ρ) and thus allows for a larger
number of ρ. This does not happen, but we need to take a different path to
prove this, which we describe below.

The standard representation (i.e. the 3-dimensional irreducible represen-
tation with non-trivial determinant) of S4 is monomial. This means that
there exists a subfield M of K such that [M : Q] = 3, Gal(K/M) = D8,
together with a quadratic 1-dimensional character χ of Gal(K/M) such that
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ρ = IndM/Q(χ), where IndM/Q denotes induction of representation from the
subgroup Gal(K/M) to the group Gal(K/Q). Thus, we can try to count
pairs (M,χ). We have classical results by Davenport and Heilbronn ([8]) on
counting cubic number fields by discriminants. Since we are only concerned
about the main term here, we do not need the error improvement by Bhar-
gava, Shankar and Tsimerman ([6]). Note that for each such pair (M,χ),
we have two more pairs (M ′, χ′) and (M ′′, χ′′), corresponding to conjugate
copies of D8 ⊂ S4 that will give us the same representation, but that will
only affect the constant term in our bounds.

We begin by denoting our counting function :

Θ(x) :=
∑

ρ
Gal(K/Q)6⊂SO3

−16∈Gal(K/Q)
q(ρ)≤x

1.

The Conductor-Discriminant formula gives

(8) q(ρ) = dMq(χ),

where dM is the discriminant of the field M and q(χ) is the absolute norm
of the conductor of the character χ.

Thus, we see that

(9) Θ(x) =
∑

ρ
Gal(K/Q) 6⊂SO3

Gal(K/Q)∼=S4

q(ρ)≤x

1 ≤
∑

(M,χ)
[M :Q]=3
χ2=1

q(χ)dM≤x

1,

where the first equality is due to the lemma.
We need to count the extensions M as well as characters χ. We write

θM,2(x) for the number of characters χ of M with χ2 = 1 and q(χ) ≤ x. We
shall use upper bounds for θM,2(x) from the appendix of this paper. These
bounds are slightly weaker than the actual asymptotic if we work with a
field M that is fixed, but since we are working with varying fields M at the
same time, these bounds, which are uniform as long as the degree [M : Q]
is fixed (which is true in our case), will work better, and the only expense
incurred is a power of logarithm. It can be seen from the final proposition
of this section below, that this increased power does not affect our result.
We note that the asymptotic is an interesting result in itself, which follows
from computing the residue of an appropriate Zeta Function and knowledge
of bounds on the class number and the regulator of a number field.

From the corollary to Proposition 2 in the appendix to this paper, we see
that

(10) θM,2(x)�
√
dM (log dM )2x(log x)2,

where the implied constant is independent of M , since c and m are now
fixed.

We now prove our main result of this section.

Proposition 4. Let ρ,K be as before. Then

Θ(x) = O(x
3
2
+ε).
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Proof. By (9), it is sufficient to prove

(11)
∑

(M,χ)
[M :Q]=3
q(χ)dM≤x

1 = O(x
3
2
+ε),

where χ is a quadratic character of M . That is, we wish to prove

(12)
∑

M
[M :Q]=3
dM≤x

∑

χ
q(χ)≤x/dM

1 = O(x
3
2
+ε).

From (10), we see that

(13)
∑

M
[M :Q]=3
dM≤x

∑

χ
q(χ)≤x/dM

1�
∑

[M :Q]=3
dM≤x

√
dM (log dM )2(log

x

dM
)2

x

dM
.

The implied constant is uniform. Hence, we get

(14)
∑

M
[M :Q]=3
dM≤x

∑

χ
q(χ)≤x/dM

1 = x(log x)2O




∑

M
[M :Q]=3
dM≤x

(log dM )2√
dM



.

Using the fact from [8] that

(15)
∑

M
[M :Q]=3
dM≤x

1 ∼ cx,

where c is an absolute constant, we see that the above sum can be estimated
as

(16)




∑

M
[M :Q]=3
dM≤x

(log dM )2√
dM




= O(x
1
2
+ε),

which proves (12). Thus, the proposition follows.
�

7. Finite Subgroups of O(3) that are not
contained in SO(3) - Part 2

We deal with the remaining cases in this section. These cases are charac-
terized by :

Gal(K/Q) 6⊂ SO(3),−1 ∈ Gal(K/Q).

Put H = Gal(K/Q) ∩ SO(3). Then we see that Gal(K/Q) ∼= H × {±1}.
The Artin representation ρ we are considering can be written as ρ ∼= σ

⊗
ε,

where σ is the irreducible three-dimensional representation of H given by
the inclusion H ⊂ SO(3) and ε is a quadratic character of Gal(Q/Q). Thus,
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we can hope to estimate the number of pairs (σ, ε) and obtain the bounds
that we need.

We shall first do this in the case where H ∼= A5. Let us denote the
corresponding A5-subextension of K by L. In this case, the representation
σ of A5 is a primitive representation since A5 has no index three subgroups.
In fact, there are two representations of A5 possible, and both of them are
primitive. As before, let M be a subfield of L such that [M : Q] = 5. The
normal closure of M is L for any choice of M .

We wish to estimate

Ψ(x) :=
∑

ρ
q(ρ)≤x
ρ∼=σ

⊗
ε

1,

where σ is a faithful irreducible representation of A5
∼= Gal(L/Q), con-

sidered as an Artin representation of Q, and ε is a quadratic character of
Q.

For a fixed σ we look at q(σ ⊗ ε) and q(σ). Let

qtame(σ) =
∏

p∈X
pep

be the tame conductor of σ, where X is the set of tamely ramified primes
in L. By a computation done previously, each ep = 2. Thus,

(17) qtame(σ) =
∏

p∈X
p2.

Let X = A∪B∪C, where A,B, and C are the sets of tamely ramified primes
with inertia subgroup isomorphic to Z/2Z,Z/3Z, and Z/5Z respectively.

Let us write the conductor of ε as

(18) q(ε) = 2α
s∏

j=1

qj ,

where α = 0, 2, or 3, and qj are distinct odd primes. We can write ε = χχ′

where χ and χ′ are quadratic characters of Q such that

p|q(χ) ⇐⇒ p = 2, 3, 5 or p ∈ X.
Thus, primes that divide q(χ′) are primes that are unramified in L which
divide the conductor of ε.

Proposition 5. Let σ, ε, χ, χ′ be as above. Then

q(σ ⊗ ε) = q(σ ⊗ χχ′) = q(σ ⊗ χ)q(χ′)3.

Proof. This follows from a well-known local computation for each prime
dividing q(σ ⊗ χ) and q(χ′). At the referee’s suggestion, we include the
reference of Serre’s book on Local Fields [11], Corollary 1′, page 100 from
which the result follows. �

Thus, we see that the condition

q(ρ) = q(σ ⊗ ε) ≤ x
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translates to the condition

(19) q(σ ⊗ χ) ≤ x and q(χ′) ≤
(

x

q(σ ⊗ χ)

) 1
3

.

Hence, we get

(20) Ψ(x) ≤
∑

q(σ⊗χ)≤x

∑

q(χ′)≤
(

x
q(σ⊗χ)

) 1
3

1.

The number of quadratic characters of Q with conductor ≤ x is O(x). So
(20) yields

Ψ(x)�
∑

q(σ⊗χ)≤x

(
x

1
3

q(σ ⊗ χ)
1
3

)
,

which gives the following proposition.

Proposition 6.

(21) Ψ(x)� x
1
3

∑

q(σ⊗χ)≤x

1

q(σ ⊗ χ)
1
3

.

Now, let

Θ(x) =
∑

q(σ⊗χ)≤x

1,

where σ and χ are as above.

Proposition 7. We have

Θ(x) = O(x2−2β),

where β is any positive constant less than 1
120 .

Proof. We shall convert the problem of estimating Θ(x) into a problem of
counting A5-extensions of Q and quadratic characters of Q. For this, we
look at the conductors and discriminants.

Since we only let 2, 3, 5 or primes that are tamely ramified in L remain in
the conductor of χ, we see that

q(χ) = 2α3β5γ
∏

p∈Y
p

for some Y ⊂ X and β, γ ∈ {0, 1}.
Let A′ = A∩Y,B′ = B∩Y,C ′ = C∩Y and A′′ = A\A′, B′′ = B\B′, C ′′ =

C \ C ′.
We can compute the effect of twisting by χ at each prime locally by

looking at image under ρ of I, cf. proof of Proposition 1. We see using
equations (17) and (18) that the tame conductor of σ ⊗ χ is given by
(22)

qtame(σ ⊗ χ) =


∏

p∈A′
p
∏

p∈A′′
p2




∏

p∈B′
p3
∏

p∈B′′
p2




∏

p∈C′
p3
∏

p∈C′′
p2


 .
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On the other hand, by a computation involving ramification degrees, we
obtain a bound on the tame discriminant of M :

(23) dtameM ≤
∏

p∈A
p2
∏

p∈B
p2
∏

p∈C
p4.

Comparing the above expressions, we see that

(24) dtameM ≤ qtame(σ ⊗ χ)2.

This is the inequality which helps us translate the bound on the conductor
to a bound on the discriminants. We have not yet dealt with the primes
2, 3, 5 which might be wild primes. But we have a uniform bound for them
as we have seen before, cf. [12]. Letting c = 2143959, we see from loc. cit.
and (19) that

(25) dM ≤ cdtameM ≤ cqtame(σ ⊗ χ)2 ≤ cq(σ ⊗ χ)2 ≤ cx2.
Equipped with these results, we now obtain our result. We have

Θ(x) ≤
∑

σ

∑

χ

1

where σ and χ are as above and the sum runs only over pairs such that
q(σ ⊗ χ) ≤ x. Thus, we get

(26) Θ(x)�
∑

M
dM≤cx2

∑

χ
χ2=1

q(χ)|8dM

1.

The inner sum is over quadratic characters χ and is thus O(xε) once σ is
fixed, because the number of divisors of dM is dεM . Hence, we get

(27) Θ(x)� xε
∑

M
dM≤cx2

1.

We then appeal to [5] as before, to obtain

(28) Θ(x)� xε
(
x2
)1−β

where β is a positive constant less than 1/120, which finishes our proof.
�

Using this proposition, we obtain our main result :

Proposition 8.

(29) Ψ(x) = O(x2−2β)

where β is as before.

Proof. This follows from combining the previous propositions 6 and 7 using
Abel partial summation. �

We move on to the remaining cases. Recall that Gal(K/Q) ∼= H × {±1},
where H is an irreducible finite subgroup of SO(3). We have dealt with the
case H ∼= A5. We deal with the cases H ∼= A4, H ∼= S4 below. Let L/Q be
a subextension such that Gal(L/Q) ∼= H.

In these cases, the representations ρ can be again written as σ⊗ ε, where
σ is an irreducible 3-dimensional representation of A4 or S4 with trivial
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determinant. Such representations σ are necessarily monomial, say induced
from a cubic subextension M/Q of L. (As before, this follows from looking
at the character table of respective groups.) ε is a quadratic character of
Gal(Q/Q) as before. Note that ε = det ρ.

Proposition 9. Let K,M,H be as before where H ∼= A4 or S4. Define

Φ(x) :=
∑

ρ
q(ρ)≤x
ρ∼=σ⊗ε

1

where ρ, σ, ε are also as before.
Then,

(30) Φ(x) = O(x
3
2
+ε′)

where ε′ is arbitrarily small.

Proof. We prove the result for H ∼= S4. The case H ∼= A4 is completely anal-
ogous. Let IndM/Q and resM/Q denote the induction and restriction functors
for the group Gal(L/Q) and subgroup Gal(L/M). If σ = IndM/Q(χ) for
some χ, we see, by adjoint property of induction and restriction (Frobenius
reciprocity), that

ρ ∼= IndM/Q(χ⊗ resM/Qε).

Here, M determines σ which in turn fixes ε. Moreover, both χ and ε are
quadratic characters. We denote the quadratic character χ⊗ res ε by χ′.

This is analogous to our methods in section 5, where we counted pairs
(M,χ′) where M is a cubic extension of Q and χ′ is a quadratic character
of M . We again write :

q(ρ) = dMq(χ
′).

Then, using the same method, from corollary to Proposition 2 in the appen-
dix, we have :

θM,2(x)�
√
dM (log dM )2x(log x)2.

And thus, we get

Φ(x)�
∑

[M :Q]=3
dM≤x

√
dM (log dM )2(log

x

dM
)2

x

dM
,

from which we get the required result.
�

8. Proof of Theorem 1

By Propositions 4, 8, 9, we see that

(31) ϑ2(x) = O(x2−2β)

which coupled with equations (3) and (7) finishes the proof.
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Appendix:
Ray class characters of bounded order and bounded conductor

David E. Rohrlich

We introduce a partial order on the set of formal Dirichlet series with non-
negative real coefficients. Given two such series A(s) =

∑
q>1 a(q)q−s and B(s) =∑

q>1 b(q)q
−s, write A(s) 4 B(s) to mean that a(q) 6 b(q) for all q > 1. It is readily

verified that if A(s) 4 B(s) and C(s) 4 D(s) then A(s)C(s) 4 B(s)D(s). Further-
more the implication holds at the level of Euler products: if A(s) =

∏
pAp(s) and

B(s) =
∏
pBp(s) with Ap(s) 4 Bp(s) for all p then A(s) 4 B(s).

By way of illustration, let M be a number field, OM its ring of integers, and
ζM (s) the associated Dedekind zeta function. Then it is a standard remark that

(1) ζM (s) 4 ζ(s)m,

where m = [M : Q]. Indeed let p be a rational prime and p a prime ideal of OM
above p, say of residue class degree f . The Euler factor of ζM (s) at p satisfies

(1− (Np)−s)−1 =
∑

ν>0

p−νfs 4
∑

ν>0

p−νs = (1− p−s)−1.

Hence if there are exactly r prime ideals p above p then
∏

p|p
(1− (Np)−s)−1 4 (1− p−s)−r 4 (1− p−s)−m.

Passing to Euler products we obtain (1).
It follows from the definitions that if A(s) 4 B(s) then the associated summatory

functions ϑA(x) =
∑
n6x a(n) and ϑB(x) =

∑
n6x b(n) satisfy ϑA(x) 6 ϑB(x) for

all x. For example, let A(s) and B(s) be the two sides of (1): Using Theorem 7.7
on p. 154 of [1] to estimate the summatory function of ζ(s)m, we obtain

(2)
∑

Nq6x
1� x(log x)m−1 (x > 2),

where q denotes a nonzero ideal of OM and the implicit constant depends only on
m, not on M .

To illustrate the use of (2), let us deduce a standard bound for the class number
hM of M . Let r1 and r2 be the number of real embeddings and half the number
of complex embeddings of M , so that r1 + 2r2 = m. Thus the Minkowski constant
(4/π)r2m!/mm is bounded above by

µ = (4/π)m/2
m!

mm
,

and therefore Minkowski’s theorem gives

(3) hM 6
∑

Nq6µ√dM
1,

where dM is the absolute value of the discriminant of M (cf. [2], pp. 119-120).
Combining (3) with (2), we recover the well-known bound

(4) hM �
√
dM (log dM )m−1 (µ

√
dM > 2),

where the implicit constant depends only on m. We shall regard m as a fixed
integer > 2, and thus the condition µ

√
dM > 2 is satisfied for all but finitely many
1
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dM with [M : Q] = m. Furthermore, since m > 2, we have dM > 2. Therefore
we can remove the condition µ

√
dM > 2 from (4) and still assert that the implicit

constant in (4) depends only on m. Actually it is more useful to state (4) for hnarM ,
the narrow ray class number of M . Since hnarM 6 2r1hM , we have

(5) hnarM �
√
dM (log dM )m−1,

where the implicit constant depends only on m.
It is convenient to refine the relation 4 slightly. Suppose that A(s) and B(s)

are Dirichlet series over M in the sense that they are presented to us in the form
A(s) =

∑
q a(q)(Nq)−s and B(s) =

∑
q b(q)(Nq)−s, where q denotes as before a

nonzero ideal of OM . We write A(s) 4M B(s) to mean that a(q) 6 b(q) for all q.
Thus 4 coincides with 4Q. Of course every Dirichlet series is a Dirichlet series over
Q, and one readily verifies that if A(s) 4M B(s) then A(s) 4 B(s).

Given a rational integer c > 2, let

RM,c(s) =
∑

q

h∗M,c(q)(Nq)−s

where h∗M,c(q) is the number of idele class characters χ of M of conductor q such
that χc = 1. Also put

EM,c(s) =
∏

p|c

∏

p|p

( e(p)(vp(c)+1)∑

ν=0

(Np)ν(1−s)
)
,

where e(p) is the ramification index of p over p and vp(c) the p-adic valuation of c.

Proposition 1. RM,c(s) 4M hnarM · (ζM (s)/ζM (2s))c−1 · EM,c(s).

Define

Em,c =
∏

p|c

m∏

e=1

m∏

f=1

( e(vp(c)+1)∑

ν=0

pfν(1−s)
)m
,

The following variant of Proposition 1 is weaker but actually more useful:

Proposition 2. RM,c(s) 4 hnarM · ζ(s)m(c−1) · Em,c(s).
Proof. By inspection, EM,c(s) 4 Em,c(s). Also

ζM (s)/ζM (2s) =
∏

p

(1 + (Np)−s) 4
∏

p

(
∑

ν>0

p−νs)m = ζ(s)m,

where p runs over all nonzero prime ideals of OM . �

Let ϑM,c(x) and ϑm,c(x) denote the summatory function associated to RM,c(s)

and ζ(s)m(c−1) · Em,c(s) respectively. Then Proposition 2 gives

ϑM,c(x) 6 hnarM ϑm,c(x),

which in conjunction with (5) becomes

(6) ϑM,c(x)�
√
dM (log dM )m−1ϑm,c(x).

Here the implicit constant depends only on m. Since Em,c(s) is entire while ζ(s)
has a simple pole at s = 1, we obtain (cf. [1], loc. cit.):

Corollary. ϑM,c(x) �
√
dM (log dM )m−1x(log x)m(c−1)−1, the implicit constant

depending only on c and m = [M : Q].
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We turn to the proof of Proposition 1. Put

ϕM (q) = |(OM/q)×|,
and let A×M be the group of ideles of M . As usual, we think of A×M as the restricted

direct product
∏′
vM
×
v , where v runs over the places of M and Mv is the completion

of M at v, and we identify M× with its image in A×M under the diagonal embedding.
We also put

(7) ÔM =
∏

v-∞
Ov,

where v runs over the finite places of M and Ov is the ring of integers of Mv. By

appending the coordinate 1 at the infinite places, we may view Ô×M as a subgroup

of A×M . Similarly, the product M×∞ =
∏
v|∞M×v and its identity component (M×∞)0

are subgroups of A×M with coordinate 1 at the finite places. With these conventions,

hnarM = |A×M/(M× · Ô×M · (M×∞)0)|
(cf. [2], pp. 146-147). As idele class characters are trivial on the principal ideles
and idele class characters of finite order are trivial on the identity component at

infinity, we deduce that there are at most hnarM extensions of a given character of Ô×M
to a finite-order idele class character of M . Let us write ϕ∗M,c(q) for the number

of characters χ of Ô×M of order dividing c and conductor q, the conductor of a

character of Ô×M being defined in the same way as for idele class characters. Then
the preceding discussion gives

h∗M,c(q) 6 hnarM ϕ∗M,c(q).

Now ϕ∗M,c is multiplicative because Ô×M =
∏
v-∞O×v by (7). Thus

(8)
∑

q

h∗M,c(q)(Nq)−s 4M hnarM

∏

p

(
∑

ν>0

ϕ∗M,c(p
ν)(Np)−νs),

where p runs over the nonzero prime ideals of OM .
We now focus on the Euler factor in (8) corresponding to a particular prime ideal

p. Let v be the corresponding place of M and p the residue characteristic of p. We
consider cases according as p|c or p - c. In both cases we use the fact that if ν > 2
then ϕ∗K,c(p

ν) is the number of characters of O×v of order dividing c which factor

through O×v /(1 + pνOv) but not through O×v /(1 + pν−1Ov).
Suppose first that p - c. Then any character of O×v of order dividing c is trivial

on the pro-p-group 1 + pOv. Hence if ν > 2 then ϕ∗M,c(p
ν) = 0. Furthermore

ϕ∗M,c(p) = gcd(c,Np− 1)− 1

because O×v /(1 + pOv) is cyclic and the trivial character of O×v does not have
conductor p. In particular we have ϕ∗M,c(p) 6 c− 1, whence

∑

ν>0

ϕ∗M,c(p
ν)(Np)−νs 4M 1 + (c− 1)(Np)−s.

Therefore

(9)
∑

ν>0

ϕ∗M,c(p
ν)(Np)−νs 4M (1 + (Np)−s)c−1

by the binomial theorem.
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Next suppose that p|c. If k > e(p)/(p− 1) + 1 then every element of 1 + cpkOv
is a cth power (cf. [2], p. 186). In particular, every element of 1 + cpe(p)+1Ov is a
cth power. It follows that ϕ∗M,c(p

νOv) = 0 for ν > e(p)(vp(c) + 1) + 1. Now for

1 6 ν 6 e(p)(vp(c) + 1) we apply the trivial estimate

ϕ∗M,c(p
ν) 6 |O×v /(1 + pνOv)|.

Since |O×v /(1 + pνOv)| = (Np)ν−1(Np− 1) 6 (Np)ν , we obtain

(10)
∑

ν>0

ϕ∗M,c(p
ν)(Np)−νs 4M

e(p)(vp(c)+1)∑

ν=0

(Np)ν(1−s).

This completes our discussion of the individual Euler factors in (8).
Now combine (8), (9), and (10). We obtain

(11)
∑

q

h∗M,c(q)(Nq)−s 4M hnarM ·
∏

p-c

∏

p|p
(1 + (Np)−s)c−1 · EM,c(s)

We may weaken the estimate in (11) by extending the product over p - c to a
product over all p, and then we use the identity

ζM (s)/ζM (2s) =
∏

p

(1 + (Np)−s).

Making this substitution in (11), we obtain Proposition 1.
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