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CONNECTED p-DIVISIBLE GROUPS

SPEAKER: ADITYA KARNATAKI

Note: our convention is that all group schemes today are commutative and and mostly all (formal) schemes
are affine.

We will talk about the Serre-Tate equivalence. This is a handy tool that gives us a handle on the connected
part of a p-divisible group. In particular, it does two things for us : (1) It enables us to define ‘dimension’
of a p-divisible group, which will play a role in proving the main theorem about generic fibers; and (2) It
helps us prove a similar theorem about special fibers.

Let R be a complete noetherian local ring with residue field k of characteristic p. The equivalence is an
equivalence

{divisible commutative formal Lie groups over R} ←→ {connected p-divisible groups over R} .
We have to define what all these terms mean.

1. Formal groups

Definition. A (affine) formal group over R is a group object Γ in the category of affine formal schemes
over R.

Let’s do an example. This works for any group scheme but we work with Gm over Fp. It is affine. We can
complete along the identity section. At the level of rings, Gm = Spec(Fp[T, T−1]). The ideal corresponding
to the identity section Spec Fp → Gm is the ideal (T −1) inside that ring. The completion along the identity
is

Spf(lim←−
n

Fp[T, T−1]/(T − 1)n)

and this is a formal group. The group law is given at the finite levels

Fp[T, T−1]/In → Fp[u, u−1, v, v−1]/((u− 1)n, (v − 1)n)

t 7→ uv.

At the level of the inverse limit we see formal power series rings

Fp[[x]]→ Fp[[y, z]]

with x = t− 1, y = u− 1 and z = v − 1. Thus x 7→ (y + 1)(z + 1)− 1 = y + z + yz. We call this completion

Ĝm. It is a one-dimensional formal group. (Here dimension refers to the number of variables.) It is formally
smooth, so it is an example of a formal Lie group.

Remark: It is worth noting how the group law can be read off at finite levels, on ‘small Artinian points’.
We refer the reader to Michael Lipnowski’s notes [1] where this concept is explained in detail in full generality.
This is a crucial observation that allows us to infer functoriality of constructions that follow.

Definition. A formal Lie group over R is a formally smooth formal group over R.

Let A = R[[x1, . . . , xn]]. Then a formal Lie group (by definition) is given by e : A → R and m : A →
A ⊗̂RA . Thus m is the same as f(Y,Z) = (fi(Y,Z)) of n power series in 2n variables. It satisfies the
following axioms :

(a) X = f(X, 0) = f(0, X)
(b) f(X, f(Y, Z)) = f(f(X,Y ), Z)
(c) f(X,Y ) = f(Y,X)

The first point implies that f(X,Y ) = X + Y + higher terms. We denote the group law X ∗ Y = f(X,Y )
and multiplication by p given by [p]Γ(X) = X ∗X ∗ · · · ∗X.

Definition. Γ is divisible if [p]∗Γ : A → A is finite free, i.e. A is a free module of finite rank over itself
through this map.
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At the group level, this corresponds to multiplication by p being an isogeny.

2. One side to the other

We have defined all the terms appearing in the statement of our equivalence. Let’s go from one side of
the equivalence to the other, i.e. start with a divisible formal Lie group Γ and define a connected p-divisible
group.

Let I = (X1, . . . , Xn) be the augmentation ideal of A → R. Let Av = A /[pv]∗Γ(I). Check: if we define
Γpv = Spec(Av) then Γpv is a group scheme induced by the comultiplication m. Each Av is a local ring so
each Γpv is connected. Thus, order of Γpv is a power of p.

We need to know that these powers are compatible, i.e. we should have

Order of Γpv = (Order of Γp)v

This follows from the fact that any finite free map φ : A → A has rank equal to rankRA/φ(I). Let ph be
the order of Γp. Then, order of Γpv is phv. Thus h will be the height of our p-divisible group. Note that
there is no direct relation between the dimension n and the height h. Later on, we’ll see that there is a
subtle relation that binds these quantities together.

In fact, from the definition of Γpv , it follows that it represents the pv-torsion of Γ. Thus, the inclusion
Γ[pv] ⊂ Γ[pv+1] gives an inclusion iv : Γpv → Γpv+1 , which is also the kernel of [pv] : Γpv+1 → Γpv+1 .
These maps form a compatible system, and thus we get a connected p-divisible group (Γpv , iv). We denote
this group by Γ(p). The association Γ 7→ Γ(p) is functorial. This follows from the ‘small artinian points’
viewpoint.

Thus, we have produced a functor from the category of divisible formal Lie groups to the category of
connected p-divisible groups. The main theorem says that this is in fact an equivalence.

3. Serre-Tate Equivalence

Theorem 1 (Serre-Tate). Let R be a complete local noetherian ring whose residue field k has characteristic
p > 0. Then Γ 7→ Γ(p) is an equivalence of categories between the category of divisible formal Lie groups
over R and the category of connected p-divisible groups over R.

Sketch of proof. (1) Fully faithfulness : This is the easy part. Unraveling the definitions (of a p-divisible
group and a formal Lie group), it can be seen that we need to recover the coordinate ring A = R[[x1, . . . , xn]]
from Γ(p), if we know ahead of time that we come from Γ.

Thus, we are given a connected p-divisible group Γ(p) = (Γpv , iv) where Γpv = Spec A /[pv]∗Γ(I). Full
faithfulness is the statement that

A ' lim←−
v

A /[pv]∗Γ(I)

as topological rings. Let m be the maximal ideal of R and let M = mA + I denote the maximal ideal of
A . Then it suffices to prove that the ideals {mvA + [pv]∗Γ(I)} form a system of neighbourhoods of 0 in the
M -adic topology on A . We refer the reader to Tate’s paper [2, Lemma 0] for more details.

(2) Essential surjectivity : This is the hard part. In the previous case, since each Av := A /[pv]∗Γ(I) was
explicitly known to us as a quotient of A , it was easier to show that A ' lim←−v

Av. But in this case, we

do not know ahead of time, that the connected p-divisible group G := (Gv, iv) that we’ll be starting with,
comes from a formal Lie group. As it will be clear from the proof, it is easy to show that G corresponds
to a formal group, but it is hard to prove that this formal group is actually a formal Lie group. We prove
essential surjectivity in two parts.

(a) First one reduces to the case where R = k. Let G = (Gv = SpecAv, ιv) be a connected p-divisible
group and let G = (Gv = SpecAv, ιv) be the base change to k. Let A = lim←−Av and A = lim←−Av.

Suppose we know the essential surjectivity to be true for G, i.e. A ' k[[x1, . . . , xn]] for some n. Then
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we need to show1 that A is a power series ring in R. One considers

R[[x1, . . . , xn]] Av

↓ ↘ ↓
k[[x1, . . . , xn]] � Av

Av is a finite free R-module, so that by Nakayama’s Lemma, a lifting πv of πv : k[[x1, . . . , xn]]→ Av

to πv : R[[x1, . . . , xn]]→ Av is surjective. Since Av+1 � Av is surjective between finite free modules,
we can arrange for compatible liftings {πv}. Doing so, we get a map ψ : R[[x1, . . . , xn]] → A. By a
topological argument which uses the fact that the surjections Av+1 � Av admit R-module splittings
because of the finite freeness, we get that ψ is a surjective map. Then it can be seen using Nakayama’s
Lemma, that ker ψ is trivial. Thus, ψ is an isomorphism. It is in fact a topological isomorphism,
which allows us to transfer the group law from the p-divisible group G to the ring R[[x1, . . . , xn]] at
finite levels, so that we have a formal Lie group Γ, that corresponds to G under the correspondence
we constructed in the previous section. We again refer the reader to [1] for more details.

(b) Now assume that R = k and remember that k is of characteristic p > 0. If X is a k-scheme denote
by X(p) the base change of X corresponding to x→ xp. It comes with a map Frob : X → X(p). In
fact, by base changing at each finite level, we can base change a p-divisible group G → G(p). The
group law at each finite level remains the same, but the counit changes when we base change. Thus
we have the following facts:
1) There is a Frobenius map F : G → G(p), which arises from the Frob maps. There is also the

Verschiebung V : G(p) → G coming from each finite level. (The ver : G(p) → G at each finite
level arises via Cartier duality from Frob, at least for commutative group schemes.) They satisfy
V F = [p]G and FV = [p]G(p) .

2) If G has height h then G(p) also has height h and F, V are surjective with finite kernel of order
≤ ph.
Looking back at the earlier notation, we want to show that lim←−Av ' k[[x1, . . . , xn]]. We’ll use

the map F to create another collection of objects {Bv} such that lim←−v
Av = lim←−v

Bv
2 and we have a

better handle on Bv.

Let SpecBv := Hv := ker(G
Fv

−→ G(pv)). It is a fact that lim←−Av = lim←−Bv, because Hv ⊂ Gv and
also Gv ⊂ HN for some large enough N , as every finite flat group scheme is killed by a sufficiently
large power of Frobenius. Thus lim←−Av = lim←−Bv =: A , say. Let Iv be the maximal ideal of Bv. Then
I := lim←− Iv is the maximal ideal of A .

Let a1, . . . , an be elements of I whose images form a k-basis for I1/I
2
1 . Then it can be checked

that these also form a k-basis for Iv/I
2
v . Thus, by Nakayama’s Lemma, the maps

uv : k[[x1, . . . , xn]]→ Bv , xi → ai

are surjective. The kernel of uv contains Jv := (xp
v

1 , . . . , xp
v

n ), since by definition, Hv is the kernel of
F v. But, it can be shown that rank Bv = pnv and codimension of Jv in k[[x1, . . . , xn]] is pnv. Thus,
we see that

uv : k[[x1, . . . , xn]]/Jv ' Bv

is an isomorphism, and taking inverse limits, we see that

lim←−uv : k[[x1, . . . , xn]]→ lim←−Bv

is the required isomorphism. (With the right topology)

�

We conclude with a definition that arises from the theorem:

Definition. Dimension of a p-divisible group G is defined to be the dimension of the divisible formal Lie
group associated to G0.

Example 2. Working out Ĝm(p) versus (µp∞).

1This is one of the two important aspects of the proof.
2This is the second major aspect of the proof.
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We expect that (µp∞) is the p-divisible group corresponding to Ĝm via this equivalence. Let’s consider

these over R = Zp and k = Fp. We know that, at each finite level, µpv = Spec R[x]/(xp
v −1). Over k = Fp,

we have µpv Spec k[x]/(xp
v − 1) = Spec k[x]/(x− 1)p

v

.

Thus, over k, Av = k[x]/(x− 1)p
v

. What is Bv? The kernel of (Frob)v on µpv should be all of SpecAv,

so that Bv = Av. By a coordinate change x → 1 + T , we see that Bv is indeed isomorphic to k[T ]/T pv

. It
is also clear that lim←−Av = lim←−Bv = k[[T ]] and that the group law, transferred from the group laws on µpv ,

is the same as the group law on Ĝm.
The situation is not immediate for R, since R[x]/(xp

v − 1) is not isomorphic to R[x]/(x− 1)p
v

. It is still
true and classically known, that lim←−v

R[x]/(xp
v−1) ' R[[T ]]. So that in this special case, the correspondence

can be checked. Tate’s proof gives us a general argument working for all cases, and in particular it shows us
how to go from the preceding paragraph about k to this paragraph about R completely generally, without
using any particular structure on R.
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